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Introduction

Spot It! is a game containing a deck of 55 cards with eight symbols printed on each card. Each player
looks at a pair of cards and tries to find a symbol that is on both cards. The instructions make a rather
extraordinary claim: each pair of cards supposedly has exactly one shared symbol. It seems that the cards
must be designed using a special pattern in order to produce this result. What does this pattern look like?
Is anything special about the number 557 Could this result have been attained using a different number
of symbols on each card?

As strange as it may seem, we can use geometry to answer these questions. In fact, Spot It/ has almost
exactly the same structure as a geometrical object called a finite projective plane. Because of my interest in
finite projective planes, my mathematics mentor told me about Spot It! so that I could explore its relation
to projective planes. (She had originally heard of the topic from a presentation by Sue VanHattum at the
Math Circle Institute at Notre Dame [4], in which I have participated as a student.)

How can we use geometry to answer questions about a card game? In modern geometry, the words “line,”
“point,” and so on are not given any specific definitions. Instead, certain assumptions (or axioms) are
devised that specify how “lines” and “points” are related to each other. In fact, by using axioms that are
different from the axioms of Euclidean geometry (the standard geometry that is taught in grade school), we
can create geometries that behave in completely different ways. For example, by changing the axioms, we
can create a geometry in which the angles in a triangle add up to less than 180°, one in which parallel lines
do not exist, or even one with a finite number of points and lines, without creating any contradictions.

We will take advantage of the flexibility of modern geometry to construct a set of axioms that describes
the Spot It! game. By refining these axioms somewhat, we will show that Spot It! is very similar to a finite
projective plane. First, though, we will discuss finite projective planes and the axioms on which they are
based.

Finite Projective Planes

The theory of finite projective planes is a topic in projective geometry that mathematicians first investigated
in the nineteenth century. Projective planes are based on only three axioms:

1. Any two points are on exactly one line.
2. Any two lines have exactly one point in common.

3. Four points must exist such that no three of them are on the same line.

)

No further assumptions are made about the behavior of “points” and “lines,” and the words “line” and
“point” are not even given any definitions. Thus, lines and points can be anything at all as long as they
obey these three axioms.

These axioms can be satisfied using only a finite number of points and lines. For example, consider the
arrangement of “points” and “lines” in Figure 1, with seven points (denoted A through G) and seven lines.
(This is called the “Fano plane.”) The arrangement is illustrated in Figure 2, in which the dots are points
and the connectors are lines. For example, the connector through D, C, and F represents one line. (The
circular connector also represents a line.)



Linel | A | B D
Line 2 B|C E
Line 3 C|D F
Line 4 D|E G
Line 5 | A E|F
Line 6 B F|G
Line 7 | A C G

D G E

Figure 1: The points on each line in the Fano plane.  Figure 2: Another depiction of the Fano plane.

Linel | A | B E G
Line 2 B|C F H
Line 3 C|D G I
Line 4 D|E H J
Line 5 E|F 1 K
Line 6 F |G J L
Line 7 G| H K M
Line 8 | A H|I L
Line 9 B I11J M
Line 10 | A C J K
Line 11 B D K| L
Line 12 C E L
Line 13 | A D F

= =

Figure 3: A projective plane with four points on every line.

No matter which two points we choose, only one line contains both points, so this arrangement satisfies
Axiom 1. Furthermore, any two lines have exactly one point in common, and no three of the points B, C,
D, and G are on a single line, so the arrangement satisfies Axioms 2 and 3 as well.

The example above has three points on each line. Figure 3 shows an example with four points on each line
(and 13 points and 13 lines in total).

It has been shown (see Theorem 33 in [2]) that if ¢ is a prime number raised to the power of any natural
number, then a finite projective plane must exist with ¢ + 1 points on every line and ¢ + 1 lines through
every point. (The values of g are 2, 3, 4, 5,7, 8,9, 11, 13, 16, 17, 19, ....) The question of whether projective
planes exist for any other values of ¢ remains unsolved. It can be shown, however, that if a projective plane
with ¢ 4+ 1 points on every line exists, then the total number of points and lines in the projective plane is
q> + q + 1, regardless of the value of ¢. (In the example above, ¢ = 3 and ¢> + ¢+ 1 = 13.)

It follows from the three axioms that in finite projective planes, every line has the same number of points.
The proof of this is given in Chapter 6, Problem 8 in [1], and we will summarize it here.

Let [ be a line with k points. We will show that every line in this projective plane has k points. Axiom 3
says that all projective planes contain four points such that no three of them are on the same line. This
means that the projective plane must contain at least two points ()1 and ()2 not on (.

Let ly,13, ..., be the (unique) lines Q1 Py, Q1 Ps, ..., Q1 Pk, respectively, where Py, Ps, ..., Py are the k points
on [. (See Figure 4.) These lines are distinct, because if, for example, [; and Iy coincided, then @1, P,
and P, would be collinear, which contradicts the definition of @;.



Figure 4: Every line must contain the same number of points.

We first show that a line m exists that is distinct from [ and Iy, 1o, ..., . Since [y, s, ..., all contain @1,
at most one of them passes through @2 (by Axiom 1). Without loss of generality, we assume that [; does
not pass through Q. Let m be the line Q2 P;. This line is distinct from [y (since [; does not pass through
Q2), l2, ..., I (since those lines do not pass through P;), and [ (since [ does not contain Q)2).

We now show that the line m, and any line that does not pass through @, contains exactly k points. By
Axiom 2, the lines [1, lo, ..., [, each intersect m in exactly one point. By Axiom 1, these k intersection points
are distinct, because I, [, ..., [, are distinct lines that all pass through )1. This means that m contains at
least k points. Suppose that m contains j points Ri, Ry, ..., Rj. Let mi,ma,...,m; be the (unique) lines
Q1R1,Q1Ra, ...,Q1R;. Using the same logic as before, we see that m1,ma,...,m; intersect [ in j distinct
points, so [ contains at least j points. But [ contains k points, so k is at least j. By the definition of j, j
is at least k, so j = k and m contains exactly k£ points. These arguments apply not only to m, but to any
line that does not pass through Q1 (except for [ itself, which contains k points by definition).

The arguments in the previous paragraph also show that any line that does not pass through Q2 contains
exactly k points. Thus, every line except possibly @Q1Q2 contains exactly k points. To show that Q1Q2
contains k points, let h be the number of points on QQ1Q2. We can simply repeat the entire argument using
the line (Q1Q)2 instead of the line [. This would show that all but one of the lines besides Q1Q2 have h
points. Thus, as long as at least three lines exist, h must be equal to k. (By Axiom 3 and Axiom 1, three
lines must exist.) Thus, @1Q2 and every other line in the projective plane contains exactly k points.

Projective planes have an interesting property called duality. In any theorem about projective planes, the
words “point” and “line” can be swapped, and the theorem will still be valid. For example, we have just
shown that every line in a projective plane has the same number of points. If we replace “point” with
“line” and vice versa, we obtain the statement that every point has the same number of lines through it,
which is also true. To see why, note that if we swap “point” and “line” in Axiom 1, we obtain Axiom 2.
Furthermore, we can prove that if we swap “point” and “line” in Axiom 3, we obtain a statement that is
equivalent to Axiom 3.



Spot It! Axioms

We will now develop a system of axioms that we will use to explain Spot It! We will see that Spot It! bears
striking similarities to a finite projective plane.

By the main principle of Spot It!, any two cards have exactly one symbol in common. Note that if we
call the cards “lines” and the symbols “points,” this requirement becomes the second axiom for projective
planes. This will be our first Spot It! axiom.

(1.) Any two cards (“lines”) must have exactly one symbol (“point”) in common.

We now need to decide whether we need any more axioms, or whether this axiom alone will be enough.
By itself, this axiom allows a variety of “uninteresting” configurations. For example, the axiom can be
satisfied even with only one card (that is, one line). The axiom also allows the existence of symbols that
are not on any cards. (Since such symbols are not part of the game, we do not need to include them.) To
fix this, we add a second axiom:

(2.) Every symbol (“point”) is on at least two cards (“lines”).

This axiom guarantees that if any symbols exist, then at least two cards must exist. It also prohibits the
existence of a symbol that is not on any card.

We also add a third axiom, obtained by swapping the words “point” and “line” in Axiom 2. This eliminates
some trivial cases, and it will be useful later when we consider the similarities between “Spot It! geometry”
and the geometry of finite projective planes.

(3.) Every card (“line”) contains at least two symbols (“points”).

In Spot It!, each card has the same number of symbols on it. The three axioms we have so far do not
guarantee this. For example, consider the arrangement of points (symbols) and lines (cards) in Figure 5.
All three of the above axioms hold, but the line BC'D has three points and the other lines have only two
points.

We would like every card to have the same number of symbols, so we add a fourth axiom:
(4.) All cards (“lines”) contain the same number of symbols (“points”).

The four axioms we have so far allow a configuration with no points or lines at all. To eliminate this
possibility, we add a fifth axiom:

(5.) At least one symbol (“point”) exists.

By Axiom 2, it follows that at least one card (in fact, at least two cards) must exist.

A

B C D

Figure 5: An arrangement in which the lines do not all have the same number of points.



The Structure of Spot It!

Now that we have created a system of axioms, we can investigate the pattern of cards and symbols in the
Spot It! game.

We first show that every finite projective plane has a configuration similar to that of the cards and symbols
in the Spot It! game. To do this, we show that the Spot [t/ axioms follow from the axioms for projective
planes. The first Spot It! axiom is exactly equivalent to the second axiom for projective planes. Further-
more, in every projective plane, each line has at least three points, and each point is on at least three lines
(we will prove this later). Thus, Spot It! axioms 2 and 3 hold for all projective planes. Also, as proved
earlier, all lines in a projective plane have the same number of points, so Axiom 4 also holds. Finally,
Axiom 5 follows directly from the third axiom for projective planes. Therefore, we can conclude that the
axioms for projective planes imply the Spot It! axioms.

This means that if ¢ is a natural-number power of a prime number, we can create a Spot It! game with
g+ 1 symbols on each card, g+ 1 cards with each symbol, ¢*>+¢+1 cards (in total), and ¢+ ¢+ 1 symbols.
The values of ¢ + 1 are 3, 4, 5, 6, 8, 9, 10, 12, 14, 17, 18, 20, ....

Most versions of the Spot It! game have eight symbols on each card, so it seems that they could be
equivalent to the ¢ = 7 projective plane. In that case, we would expect the total number of cards to be
72 + 7+ 1 = 57. But the versions of Spot It! with eight symbols on each card contain only 55 cards. So
even though every projective plane satisfies the Spot It! axioms, not every configuration satisfying the Spot
It! axioms corresponds to a projective plane.

What, specifically, is the pattern with 55 cards? As discussed in [3], it is simply the ¢ = 7 projective
plane with two lines (i.e., cards) removed. To see how this makes sense, let us return for a moment to the
projective plane shown in Figure 3. Suppose that we simply remove two of the lines (for example, lines 12
and 13). We can see that all of the Spot It/ axioms still hold, even though the configuration is no longer
a projective plane. In fact, as long as we do not remove all of the lines, Axioms 1, 3, 4, and 5 hold no
matter how many lines we remove. Thus, we can remove as many lines as we want as long as Axiom 2 is
still satisfied.

Similarities between Spot It! and Projective Planes

By modifying the Spot It! axioms somewhat, we obtain a system of axioms that is exactly equivalent to
the axioms for projective planes. We now discuss these modifications.

The five Spot It! axioms do not result in a dual geometry (i.e., a geometry with the property of duality
described above). For example, if we swap “symbol” and “card” in Spot It! axiom 1, we obtain the
statement that any two symbols have exactly one card in common (that is, any two symbols are on exactly
one card). This is equivalent to the first of the axioms for projective planes, but it is not necessarily true for
Spot It!, because if we remove a card (line) from a finite projective plane as described above, we remove the
unique card containing some particular pair of symbols, and so it is no longer true that any two symbols
are on exactly one card.

Since projective planes are dual, we will need to adjust the Spot It! axioms to make them equivalent to
the axioms for projective planes. We simply add one more axiom, which we obtain by swapping “symbol”
and “card” in Axiom 1:

(6.) Any two symbols (“points”) are on exactly one card (“line”). (This is equivalent to the first of the
axioms for projective planes.)

We do not need to add the “dual” of Axiom 4 (i.e., the statement obtained by swapping “symbol” and
“card” in Axiom 4), because we will now show that the dual of Axiom 4 (i.e., “all symbols are on the same
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Figure 6: A proof that all points are on the same number of lines.

number of cards”) follows from Axiom 4 itself. We will use the words “point” and “line,” and prove that
all points are on the same number of lines.

Let k be the number of points on each line (i.e., the number of symbols on each card), and let P be any
point. (See Figure 6.) Any line [p that passes through P must contain at least one other point @ distinct
from P (Axiom 3), and this point must be on at least one line [g distinct from Ip (Axiom 2). The line
lg cannot pass through P (Axiom 1). Since lg contains exactly k points, exactly k lines exist joining P
to the k points of lg (Axiom 6). Every line through P must intersect lg in a unique point, because two
lines through P and intersecting /g in the same point would violate Axiom 1. Thus, P has exactly k lines
through it. (This proof is similar to ideas in Chapter 6, Problem 8 in [1].)

These six axioms are not exactly equivalent to the axioms for projective planes, because they allow the
configuration shown in Figure 7. This is not a projective plane, because it violates the third axiom for
projective planes (which says that four points must exist such that no three of them are on a single
line).

To eliminate this possibility, we will modify two of the axioms very slightly:
(2.) Every symbol (“point”) is on at least three cards (“lines”).
(3.) Every card (“line”) contains at least three symbols (“points”).
These changes rule out the possibility above, since each line must now have at least three points.

Here, then, are the modified Spot It! axioms. (The words “card” and “symbol” can be replaced with “line”
and “point,” respectively.)

1. Any two cards have exactly one symbol in common. (Equivalent to projective-plane axiom 2)
2. Every symbol is on at least three cards.

3. Every card contains at least three symbols.

B C

Figure 7: Not a projective plane.



4. All cards contain the same number of symbols.
5. At least one symbol exists.
6. Any two symbols are on exactly one card. (Equivalent to projective-plane axiom 1)

We now show that these six Spot [t! axioms are exactly equivalent to the three axioms for projective
planes. Spot It! axioms 6 and 1 are equivalent to projective-plane axioms 1 and 2, respectively. We show
first that Axiom 3 for projective planes (which specifies that four points exist such that no three are on
the same line) follows from the six Spot It! axioms.

Figure 8: Axiom 3 for projective planes follows from the Spot It! axioms.

By Axiom 5, at least one point P must exist, and by Axiom 2, at least three lines [y, ls, and I3 must pass
through P. (See Figure 8.) By Axiom 3, each of these three lines must contain at least two points other
than P. Let A and B be two points on [y distinct from P, and let C' and D be two points on ls distinct
from P.

Any set of three points in {A, B,C, D} contains two points on either [ or Iy, so, by Axiom 6, the three
points cannot be on a line. (For example, consider the set {4, B, D}. The points A and B are both on
[1. Since D is not on l;, ABD cannot be a line, because otherwise, the lines ABD and I; would both
join A and B, which violates Axiom 6.) Therefore, the points A, B, C, and D satisfy the third axiom for
projective planes.

This shows that the axioms for projective planes follow from the six Spot It! axioms. Note that we did not
refer to the fourth Spot It! axiom in this proof. Therefore, the axioms for projective planes follow from the
other five axioms. But the fourth Spot It! axiom (i.e., “all lines have the same number of points”) follows
from the axioms for projective planes. This means that making the above modifications to the axioms
caused Axiom 4 to become redundant, since it now follows from the other five axioms. Additionally, the
proof above would still be valid even if the line I3 (see Figure 8) did not exist, so when we modified Spot
It! axioms 2 and 3 above, it was not necessary to modify Axiom 2 so that it guaranteed the existence of
at least three lines (instead of two lines) through any given point.

We will now show that the (modified) Spot It! axioms follow from the axioms for projective planes. The
fifth Spot It! axiom follows directly from Axiom 3 for projective planes. We showed earlier that every line
in a projective plane must contain the same number of points, so the fourth Spot It! axiom follows from
the axioms for projective planes as well. To obtain the second and third Spot It! axioms from the axioms
for projective planes, consider the four points A, B, C', and D guaranteed by Axiom 3 for projective planes,
no three of which are collinear. (See Figure 9.) Three distinct lines must exist joining A to B, to C, and
to D (because of Axiom 1 for projective planes and the fact that no three of the four points are collinear).
Furthermore, the lines AB and C'D do not intersect at A, B, C, or D (since no three of those points are



Figure 9: The second and third Spot It! axioms follow from the axioms for projective planes.

collinear), so they must intersect at some other point £ on AB. Thus, the point A has at least three lines
through it, and the line AB has at least three points on it. By the fourth Spot It! axiom, it follows that
all points are on at least three lines, and all lines have at least three points.

This shows that the modified Spot It! axioms are equivalent to the axioms for projective planes.

We can see from all of this that geometry can be used to model situations that do not seem at all geometrical.
If we limit ourselves to thinking of geometry as the study of “points” and “lines” drawn on a piece of paper,
we can only take advantage of a small part of its usefulness. It is also surprising that such a simple-sounding
card game is so closely related to advanced geometrical concepts.

Further Reading

In [5], [6], and [7], Sue VanHattum discusses Spot It! and her experience with using it as a topic in schools
and Math Circles.

In [3], Michael Kleber discusses the missing two cards in the Spot It! game. A comment on Kleber’s post
by Guillaume Gille-Naves, a former member of the development team for the French version of Spot It/
explains that the game has 55 cards (instead of 57) for marketing purposes and to ensure that the rules of
the game could be printed on extra cards without exceeding the manufacture limitation of 60 cards.

Finally, an article [8] by Burkard Polster (published in the magazine Math Horizons shortly after I wrote
this paper) discusses the mathematics behind Spot It/, including the game’s similarities to projective planes
and other mathematical objects.
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