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Connecting a Growing Network

Brianna Donaldson, Director of Special Projects

A NOTE 
FROM AIM

The Math Teachers’ Circle Network is a project 
 of the American Institute of Mathematics   

600 E. Brokaw Road, San Jose, CA 95112 
Phone: 408-350-2088 

Email: circles@aimath.org
Website: www.mathteacherscircle.org
f  www.facebook.com/mtcnetwork

T  @MathTeachCircle ⊆02 MTCircular · Summer 2016 · American Institute of Mathematics

Dear MTC Network,

Our network has been growing in exciting ways over 
the past few months. In February, we were selected 
as a new partner in 100Kin10 (www.100kin10.org), 
a national network focused on training and retain-
ing 100,000 excellent STEM teachers by 2021. Being 
a 100Kin10 partner provides opportunities not only 
to make new connections and learn from the experi-
ence of others working in STEM education, but also 
to share our work outside our typical sphere. For 
example, I highly recommend checking out a recent 
webinar for Educator Innovator, a program of fellow 
100Kin10 partner the National Writing Project, in 
which Chris Bolognese, Fawn Nguyen, Paul Zeitz, 
and Joshua Zucker discuss “What Makes a Good 
Problem?” (www.educatorinnovator.org/webinars/
what-makes-a-good-problem).

It was my great pleasure to be part of the launch 
of the new Montana MTC Network at a workshop 
in April, along with Angie Hodge, Bob Klein, and 
a group of dedicated Montana math professionals 

led by David Patterson, Fred Peck, Matt Roscoe, and 
Ke Wu of the University of Montana. In June, Nathan 
Borchelt and Sloan Despeaux organized a dual-purpose 
workshop that inducted new teachers into the Smoky 
Mountain MTC and also launched new MTCs in North 
Carolina, South Carolina, and Virginia, with the help of 
mentors Mark Brown and Joshua Zucker. Our mentor-
ing program for new MTCs is also in full swing, with 
new leaders visiting nearby MTCs and experienced 
leaders visiting new MTCs across the country.

You’ll notice that this issue of the MTCircular contains 
more math than ever, with write-ups of four intriguing 
new sessions. I hope many of you try them out with 
your MTCs this year!

Happy problem solving!

mailto:circles@aimath.org
http://www.mathteacherscircle.org
http://www.facebook.com/mtcnetwork
http://www.facebook.com/mtcnetwork
https://twitter.com/mathteachcircle
https://twitter.com/mathteachcircle
http://100kin10.org
http://educatorinnovator.org/webinars/what-makes-a-good-problem
http://educatorinnovator.org/webinars/what-makes-a-good-problem
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Quilt While You're Ahead
Investigating Quilt Block Symmetries

by Matt Roscoe
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“A mathematician, like a painter or poet, is a maker 
of patterns. If his patterns are more permanent than 
theirs, it is because they are made with ideas.” (G. H. 
Hardy)

“...in mathematics, the primary subject-matter is not 
the mathematical objects but rather the structures in 
which they are arranged.” (M. Resnik)

Q
uilts are a familiar set of cultural artifacts 
for many people. Prized for their unique 
patterns and labor-intensive production, 
quilts also happen to be beautifully 

mathematical.
A primary unit of quilt making is the quilt block, 

a square grid filled with patches of fabric according 
to certain rules.  Quilters commonly refer to quilt 
blocks as 9-square or 16-square because of the underly-
ing grid.  In this exploration, we will consider the 
16-square.  The reader is invited to extend (or should I 
say reduce?) the exploration to the 9-square.

Introduction: Build a Quilt Block
To launch the investigation, I ask participants to 
imagine that they are planning a 16-square quilt block. 
Now, suppose that we restrict each quilt block to a 
4-by-4 grid of squares. Each square can be filled in one 
of six ways, as shown in Figure 1. One possible quilt 
block configuration is shown in Figure 2.  

Once participants understand the rules by which 
quilt blocks can be constructed, I ask them to color a 
quilt block using a blank 16-square grid. 

Compare Your Blocks, Find Your Partners
Once everyone has created a quilt block or two, I ask 
participants the question, “From a mathematical per-
spective, how might your quilt block be similar to or 
different from the one your neighbor has constructed?” 
Inevitably, this starts up a conversation about fractions, 
decimals, and percents.  After we agree that a classifica-
tion scheme could be imposed using this framework, I 
try to steer participants to something deeper by asking, 
“Why do humans find quilts beautiful?”  Usually, this 
is enough to get participants thinking about symmetry.  
I ask, “What symmetries do your quilts possess?  Do 
all quilts possess the same symmetries?”  From here, I 
ask participants to circulate around the room, compare 
quilt blocks, and find a “partner” whose quilt block 
possesses exactly the same symmetries. 

Developing a Taxonomy
Once participants have become familiar with the idea 
that all quilt blocks are not necessarily the same in 
terms of the symmetries they have, I bring the group 
back together and ask, “What sorts of symmetries can 
a quilt block possess?” Here, I hope to elicit the four 
possible line symmetries and the three possible turn 
symmetries. These symmetries, together with the iden-
tity symmetry, are displayed in Figure 3 below.

 Figure 3.  Available symmetries of the square
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 Figure 1.  Quilt block restrictions

 Figure 2.  An example quilt block
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I encourage the participants to develop a taxonomy of 
symmetry so that we can compare the blocks according 
to the symmetries present/absent.  Using the example in 
Figure 2, I ask, “What would we call this if we were to 
classify it according to its symmetries?”  Usually, some-
one will say something like, “Diagonal, Diagonal, and 
180.”  I argue that it might be easier to attach an algebraic 
representation such as D-D-180.  This leads to a classifica-
tion scheme that might look something like:

•  90: 90-degree rotational symmetry
•  180: 180-degree rotational symmetry
•  270: 270-degree rotational symmetry
•  H: reflective symmetry in a horizontal line; inter-

changeable with V
•  V: reflective symmetry in a vertical line; interchange-

able with H
•  D: reflective symmetry in a diagonal line; two possible

Using this scheme, I ask participants to identify the dif-
ferent “types” of quilts they had constructed, an activity 
that leads naturally to the question, "Are there more?"

Are There More?
At this point, I hand out a set of 28 quilt blocks for fur-
ther investigation. Organized into small groups, partici-
pants are encouraged to use the classification scheme to 
“type” each quilt according to the symmetries present.  
These 28 quilt blocks are displayed in Figure 4. The reader 
is encouraged to attempt this classification task before 
reading on.  

A tool that may be useful in completing the activity 
is the Mira, a small plastic device that helps with the 
concept of reflective symmetry. The sorting activity takes 
time and invariably leads to conflict. Encourage groups 
to settle conflicts by presenting their reasoning or by 
critiquing the reasoning of others.  Groups should come 
to the consensus that there are seven different symmetry 
classes, each containing four distinct quilt blocks:

•  D
•  H-V-D-D-90-180-270 (also called “ALL”)
•  D-D-180
•  H
•  H-V-180
•  180
•  90-180-270

In Figure 4, members of these classes are found in the 
seven rows.  This sorting activity usually adds several new Figure 4. Twenty-eight quilts to sort by symmetry
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classes to the list that had been “discovered” through 
construction.  But the question remains: Are there more?

Are There More? Part II
To investigate this question further, I encourage par-
ticipants to “imagine” other possible symmetry groups.  
For example, “Could a D-D-90 quilt exist?”  Usually 
participants come to the conclusion that if a quilt block 
has 90-degree rotational symmetry, then it must have 
180-degree rotational symmetry—so, no such group 
exists. This naturally leads to the idea that a quilt block’s 
symmetries can be composed to produce other symme-
tries—a 90-degree rotation composed with a 90-degree 
rotation is a 180-degree rotation. This sort of investiga-
tion can lead to many interesting results. Past partici-
pants have discovered that a quilt possessing any two 
line symmetries automatically inherits a rotational sym-
metry (disallowing types such H-V or H-V-D or D-D).  
Participants are also quick to note that any quilt with 90-
turn symmetry inherits all turn symmetries (disallowing 
types such as 180-270 or 90-270 or H-V-90).  Proceed-
ing via elimination, we can conclude that there are only 
seven quilt block “types” that possess at least one sym-
metry.  Each of these types is found in the list above. 

Conclusion
A nice way to conclude the activity is to look at some ac-
tual quilts through the lens of symmetry groups.  If you 
have no quilts on hand, pictures of quilts are easily found 
on the internet.  Questions for further study include:

•  How many quilts can be constructed according to the 
quilt block restrictions in Figure 1? (Here you might 
want to look for an upper bound first.)

•  How many quilts that possess all possible symmetries 
can be constructed according to the quilt block 
restrictions in Figure 1? (Consider black and white 
“negative” images for an even more interesting 
result.)

•  How many quilts that possess all the rotational sym-
metries (and no others) can be constructed accord-
ing to the quilt block restrictions in Figure 1? (You 
might want to answer the previous question first!)

•  Is the number of D-D-180 quilt blocks the same as 
the number of H-V-180 quilt blocks? (The answer 
might surprise you.)  

For resources related to this article, please visit www.
mathteacherscircle.org/newsletter.  ⊆

http://www.mathteacherscircle.org/newsletter
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by Michelle Manes

Winning the Lottery
An Expected Value Mystery

M
any of our sessions at the Math Teachers’ 
Circle of Hawai’i (MaTCH) are focused 
on giving teachers time to explore and 
problem solve, and the facilitators don’t 

spend too much time “teaching” or explaining any 
particular mathematical content. Sometimes, though, 
we find an irresistible piece of mathematics that we 
want to share at MaTCH, and these sessions run a bit 
differently:

•  Introductory activity to inspire / elicit a particular 
mathematical idea

•  Teaching about that idea (usually a 10-15 minute 
PowerPoint or whiteboard talk followed by Q&A 
time)

•  Follow-up activity that either extends the math-
ematical idea or ties it to other topics

The Inspiration
Here I’ll describe a recent MaTCH session with this 
format, inspired by my friend Jordan Ellenberg’s 
wonderful book How Not to Be Wrong: The Power of 
Mathematical Thinking. Ellenberg tells the story of a 
lottery scam that wasn't actually a scam:   

In 2005, an MIT student was working on a senior 
project examining the expected value for lottery tickets 
in various states, and he noticed something incredible.  
On certain special weeks, the expected value of a 
$2 Cash Winfall ticket in Massachusetts was about 
$5.53. 

(In most weeks, the expected value for a ticket in 
this lottery, like in all lotteries, was much lower than 
the ticket price: 80¢ for a $2.00 ticket.  So those special 
weeks were really, really special.)

Of course, that doesn’t mean that every $2 ticket 
would pay out $5.53.  As Ellenberg says, “expected 
value is not the value you expect.”  What it does mean 
is that if you buy lots and lots of tickets — thousands 
of them — then you have a good chance of almost 
tripling your money.

After checking and re-checking and re-re-checking 
his work, this student got together with several of his 
friends and did just that.  They bought thousands of 
lottery tickets each time the lottery had this special, 
high expected value week.  And they won millions 
of dollars between 2005 and the last Cash Winfall 
drawing in 2012.

Two other “cartels” noticed the same opportunity 
in the Massachusetts lottery and also started playing 
big on those special weeks.  But the MIT cartel was 
different: Instead of using “Quick Pick” machines to 
choose numbers randomly, the MIT students under-
took the tedious job of filling out their lottery tickets 
by hand.  

Ellenberg asks the obvious question: Why would 
anyone do that?  He offers two explanations: First, 
birthday problem-like reasoning says that using the 
Quick Pick machine thousands of times will surely 
result in lots of duplicate tickets, something the cartels 
want to avoid.  His second explanation has to do with 
guaranteeing a minimum return on the bet, and it ties 
to even more interesting mathematics: finite projective 
geometries.

Introductory Activity
We started the session by playing a mini lottery game. 
Each table had a banker to collect money for ticket 
purchases before each round and to pay out winnings 
after each draw.  Each player started with $10 in Mo-
nopoly money. The rules:

•  We used standard playing cards numbered 1–7.  A 
“ticket” was a choice of three numbers from 1–7, 
no repeats.

•  Before each round, participants bought their tickets 
for $1 each. They decided which tickets to buy and 
how many.  

•  Each round, the MC shuffled the mini-deck, drew 
3 cards, and placed them face-up on the document 
camera.

08
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The payout scheme: 

•  Match all 3: Win $10
•  Match 2 of 3: Win $3
•  Match 0 or 1 of 3: No prize 

Everyone (including me) played ten rounds.  If you 
lost all of your money, you were out and couldn’t play 
any more.  The MC kept track of the winning draws on 
a whiteboard, so that we could reference them later.

After all ten rounds, I asked everyone to stand up.  
Then I had them sit down if they:

•  Were out of money,
•  Had less than $5 left,
•  Had less than $10 left,
•  Had less than $20 left,
•  Had less than $30 left.

When only a couple of people were left standing, we 
compared our winnings.  I did better than all but one 
player by playing the same seven tickets each round:

1-2-3, 1-4-7, 1-5-6, 2-5-7, 2-4-6, 3-4-5, 3-6-7.
I put my seven tickets on the document camera and 

asked everyone to figure out what I won or lost in each 
round.  They were surprised to find that not only did I 
win money overall, I never lost money. In each round, 
either I won the jackpot (up $3 after buying seven 
tickets and winning $10), or I won exactly three of the 
“match 2-out-of-3” prizes (up $2 after buying seven 
tickets and winning $9).  

Some other players might have had bigger indi-
vidual rounds (for example winning the jackpot and 
one or more 2-out-of-3 prizes).   But no one consis-
tently came out ahead in every single round, so they 
wanted to know how I had done it.  I promised that we 
would come back to that question before the end of the 
session.

Mathematics: Expected Value
At this point, we took about 15 minutes to talk about 

the odds of winning a lottery and how they are calcu-
lated.  The basic rules of probability tell us that

P(event) = (# ways that event can happen) / (total # 
of possible outcomes).

I asked them to calculate the probability of a single 
ticket hitting the jackpot in our 7-ball lottery.  Some of 
the secondary teachers used combinatorics to calculate 
7-choose-3.  But the numbers are small enough that 
working systematically, it can be seen that:

P(jackpot) = 1/35.
The probability of a single ticket winning the 

2-out-of-3 prize is harder to calculate, since you have 
to consider all of the possible pairs in the set of three 
cards (there are 3 pairs), and you have to remember 
that winning the 2-out-of-3 prize means that you 
didn’t win the jackpot.  Teachers worked for a while on 
this question, until someone was able to convince the 
group that

P(2-out-of-3) = 12/35.
We then defined the mathematical term “expected 

value” (EV), which is really more like a weighted 
average value:

EV = (Probability of Event #1)(Value of Event #1) 
+ (Probability of Event #2)(Value of Event #2) + … + 

(Probability of Event #n)(Value of Event #n).
In our lottery, there are only two events that have 

any nonzero value: hitting the jackpot or matching 
2-out-of-3. 

EV = (1/35)($10) + (12/35)($3) = $1.31.
Of course, you can never actually win $1.31; any 

given ticket can only win $0, $3, or $10.  We see 
concretely that “expected value is not the value you 
expect.”

Since the expected value is higher than the ticket 
price, this lottery game is very good for players, and 
very bad for whoever is using it to raise money.  A 
player may lose in the short term, but long term you 
expect to come out about 30% ahead.

09
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All of these calculations generalize to actual state 
lottery games, but counting up the number of ways 
to match, say, 4-out-of-6 on a 46-ball lottery is more 
complicated. We showed and briefly explained the 
combinatorial formulas for doing that, and then 
calculated the expected value for the Massachusetts 
Cash Winfall game (in the non-special weeks).

I pointed out that my usual winning was $9 on a $7 
investment, slightly below the expected value.  But that 
small difference is mitigated by the fact that I never 
lost at all. 

Follow-Up Activity
We presented the following rules (the axioms for a pro-
jective plane), and asked teachers if they could draw a 
picture with a finite number of points that satisfied all 
of the rules:  

1.	Each pair of distinct points has a unique “line” 
between them.

2.	Each pair of distinct “lines” intersects in a unique 
point.

3.	Each “line” contains at least three points.
4.	There exist at least three non-collinear points.

We emphasized that “lines” may not look like 
familiar straight lines from Euclidean geometry.

Teachers worked on this in groups for a while.
The facilitators spent a lot of time with each group, 
clarifying the axioms and the task, and explaining that 
you can’t satisfy all of the rules with just three points 
(or fewer): By Rule #3, they would all be on the same 

line, but Rule #4 says they have to be non-collinear.  
We were careful to draw curvy “lines” at every 
opportunity.

Later, participants presented arguments that we 
can’t have just 4 points or 5 points.  One group drew a 
picture with 7 points that they claimed satisfied all of 
the rules, and we had everyone check it carefully.

Tying It All Together
At this point, I introduced the Fano plane, which is the 
smallest possible example of a projective plane and has 
7 points and 7 lines.

I pointed out that if we number the points from 1–7, 
then each “line” contains three points, as follows:

1-2-3, 1-4-7, 1-5-6, 2-5-7, 2-4-6, 3-4-5, and 4-6-7.
 By Rule #1, every possible pair of numbers appears 

on a line somewhere, and by Rule #2 that pair appears 
on only one line. 

So if we use these seven lines as lottery tickets, then 
no matter what the draw is, all three possible pairs are 
guaranteed to appear in the tickets.  Either they are 
all on the same ticket (jackpot!), or they are on three 
different tickets (we match 2-out-of-3 three times).

We ended the session by regaling the teachers with 
an expanded version of the Massachusetts lottery story 
and answering any lingering questions.  

Resources and handouts related to this article can be 
found at www.mathteacherscircle.org/newsletter.  ⊆
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Figure 1.  Lines
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Semiregular Tilings
A Topic Supporting Diverse Math Practices
by Nina White and Hanna Bennett

Q
uestions about polygonal tilings of the 
plane can utilize a classical area of math-
ematics to highlight and connect middle 
and high school mathematics content 

standards, mathematical practices, and the nuanced 
nature of mathematical justification. Inspired by an 
MTC of Austin session on Escher-like tilings led by 
Altha Rodin, we ran a session on semiregular tilings 
of the plane at the Wayne County (MI) MTC last fall. 
Here we describe what mathematical features naturally 
arise at different points in the inquiry.

Semiregular Tilings
A tiling of the plane covers the (infinite) plane, with-
out gaps or overlaps, using congruent copies of one 
or more shapes. We can consider special categories of 
tilings and ask what possibilities exist under those con-
straints. For example, we might ask that only one shape 
be used, that only quadrilaterals be used, or that only 
regular polygons be used. A semiregular tiling is a tiling 
of the plane with the following constraints:

•  Two or more regular polygons are used.
•  Polygons meet “edge-to-edge.” That is, no vertex 

falls in the middle of an edge of another polygon—
it always meets at other vertices. An immediate 
consequence of this is that all of our edges must be 
the same length.

•  The pattern of polygons around every vertex is the 
same. (Note that the vagueness of the wording “the 
same” in this definition is intentional, as we discuss 
below.)

The overarching question of this session is:
Can you find all possible semiregular tilings of the 

plane?
Manipulatives are a useful tool for exploration as 

well as communication (see link to printable .pdfs at 
www.mathteacherscircle.org/newsletter); we suggest 
printing them on different colors of paper so that 

different shapes are easily distinguishable when used 
in a tiling together. The overarching question can be 
scaffolded by posing it as two consecutive questions:

Question 1: What possibilities exist around a 
single vertex?
Approaching this preliminary question creates a few 
intellectual needs: 

1.	the need to recall (or re-find) interior angle sum 
formulas. Using the fact that the interior angle sum 
of a triangle is 180o, there are several different jus-
tifications of the interior angle formula for convex 
n-gons that participants or facilitators might know. 
There is also a simple justification starting from the 
(equivalent) fact that the sum of the turn angles in 
any convex n-gon is 360o. Depending on the time 
available, this could be an opportunity to share 
some of these justifications.

2.	the need to articulate what makes two vertex 
patterns the “same’’ or “different.” This creates the 
opportunity to discuss rotational and translational 
symmetry, a middle school content area.

3.	the need to systematically approach the ques-
tion case by case. This third need is sometimes 
called organization, and is a centrally important 
mathematical problem-solving strategy (see 
Zucker article at www.mathteacherscircle.org/
newsletter). If you try to align this particular skill 
with the eight Common Core State Standards for 
Mathematical Practice, you can find supportable 
overlap with at least six of the eight standards (nos. 
1, 3, 5, 6, 7, and 8). If this practice of organization 
is made explicit in the course of the session, this 
alignment could make for an interesting discussion 
with teacher participants familiar with the CCSS 
Standards for Mathematical Practice.

To scaffold this question further, the facilitator can 
ask participants to first consider the case of triangles

11
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and squares. That subquestion narrows the scope, al-
lowing for more detailed involvement with needs (2) 
and (3).

Notation. For the purposes of record-keeping and com-
munication, it may be useful to introduce a standard-
ized vertex notation at some point, if teachers don’t 
come up with their own. A vertex at which, cyclically, 
we see a “triangle, square, triangle, triangle, square” can 
be described as a 3.4.3.3.4 vertex.

Question 2: For each vertex pattern that 
works, can you continue the tiling forever?
Of all the possible tilings around a vertex, we focus on 
three that highlight different intricacies of mathemati-
cal justification.

Figure 1.  How can we place this next square? Can this vertex pattern possibly work 
on the whole plane?

Example 1: 3.3.4.3.4
This rich example will likely arise early in the explo-
ration, because equilateral triangles and squares are 
familiar shapes, with familiar angle measures. It’s well 
timed if it does arise early, because its complexity 
motivates participants to approach later vertex patterns 
with care. It naturally leads to two important math-
ematical questions about the general scenario at hand: 
1) How do I continue the pattern beyond a single 
vertex? 2) How do I know the pattern will continue 
forever?

When participants work to continue this pattern, 
they will quickly find themselves having to make 
choices about whether to place a square or triangle 
along a given edge. It can be very productive (so don’t 
try to stop it!) for some groups of participants to make 

Figure 2.  Is this a semiregular tiling? What is the vertex pattern?

12
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Figure 3.  What goes wrong when we try to continue this vertex pattern? Is there a 
way to fix it? Why or why not?
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the wrong choices, leading to a tiling dead end that 
is not easily rectifiable without serious backtrack (see 
Figure 1). Even once participants have found the right 
choices to make in laying down the tiles, an example 
of a path that didn’t work will hopefully motivate the 
need to truly convince ourselves that the pattern can 
continue forever.

Example 2: 3.3.6.6
This example is tricky because, starting with this vertex 
pattern, you can tile the plane. However, the most 
natural tiling that arises conflicts with the definition of 
semiregular tiling (see Figure 2). This is an opportunity 
to revisit the definition (and the importance of defini-
tions in general), and to justify why the pattern cannot 
be continued in a fashion that fits our definition.

Example 3: 5.5.10
Although it is clear almost immediately that you won’t 
be able to continue this vertex pattern (see Figure 3), 
articulating exactly why this is the case is a great exer-
cise in mathematical argumentation.

Extensions
Changing the constraints in our definition allows for 
many additional questions. For example: What if we 
don’t require our shapes to be regular? What if we 
don’t require our vertex patterns to be uniform? What 
if we delete our “edge-to-edge” constraint?

This session could be part of a larger series of ques-
tions about tilings. See, for example, Rodin’s article 
on Escher-like tilings in the Summer/Autumn 2014 
MTCircular.  ⊆

What makes a good 
problem? 

Watch MTC leaders Chris Bolognese, 
Fawn Nguyen, Paul Zeitz, and Joshua 
Zucker discuss this question in this 

Educator Innovator webinar: 
www.educatorinnovator.org/webinars/

what-makes-a-good-problem

http://www.facebook.com/mtcnetwork

http://www.facebook.com/mtcnetwork
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http://www.mathteacherscircle.org
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Shifting Gears
Approximations in Cycling
Michael Nakamaye

N
early 17 years ago I moved to Albuquerque. 
The most important factor in this decision 
was the weather, propitious year-round 
for biking. I have been biking nearly my 

entire life, for fun, transportation, and exercise. In 
Albuquerque, what started as an innocent 15-mile 
round-trip commute has now evolved into a nearly 30-
mile route, including an unnecessary-but-rewarding 
1,000 vertical-foot climb.

When I learned that James Tanton had developed a 
Math Teachers’ Circle session about biking, I watched 
the online video of the session with great enjoyment 
and fascination. Given a set of wobbly bicycle tracks 
that are the only clue left by an escaping thief, the 
session asks, “Which way did the thief go?” Tanton 
also presented a version of this session in Hawaii this 
past year, and so it seemed natural to build upon this 
in some way for my visit to Hawaii in April 2016. But 
where to begin?

After pondering the rogue thief ’s tracks for a bit, 
I thought to myself, “No decent bicyclist would ever 
leave tracks like that!” Indeed, part of what teachers 
discover in Tanton’s activity is that the front wheel is 
traveling further than the rear wheel, which is very in-
efficient. In addition, the rider is losing her momentum 
by swerving. An experienced cyclist mainly uses the 
steering to make minor adjustments in the direction of 
travel; the main way a cyclist turns is by leaning in the 
direction of the turn.

After asking the teachers to think about these ideas 
briefly and recall some of the fun discoveries they 
made with Tanton, I moved the conversation in a dif-
ferent direction. How does a bike work? As you pedal, 
the bike moves forward. What causes this forward 
motion? The bike chain moves over each notch (or 
tooth) in the front ring near the pedals. As it does so, it 
also moves over one notch in the rear ring on the back 
wheel. So if there are x notches on the front ring and 
y notches on the rear ring, the bike advances by x/y 

revolutions of the rear wheel each time you make a full 
revolution of the pedals. The larger this fraction, the 
more difficult it is to pedal because you are advancing 
further per pedal stroke. For equivalent ratios, like 
52:26 and 42:21, pedaling with 52 teeth (notches) in 
front and 26 in the rear will feel identical, and have the 
same impact, as pedaling with 42 teeth in front and 
21 in the rear. A bike is like a ratio machine, giving the 
rider a concrete physical experience of different ratios.

It turns out that there are many other ratios to 
consider when riding a bike, all related to the gears:

•  How many teeth are there usually on the different 
gears? Why? 

•  What is a comfortable cadence (number of pedal 
revolutions per unit time) for most riders?

•  What is the range of speeds that you can comfort-
ably go on a bike?

We then moved to a different type of question: Is 
there duplication between gears on a bike, i.e., two dif-
ferent gears whose ratios are equivalent? (The answer 
may depend on the bike, but is usually “no.”) If not, 
which two gears are closest? (For the bike I brought 
for demonstration purposes, the two closest gears were 
53:23 and 39:17.) Would you be able to feel the differ-
ence? (Yes, if you are working hard!)

At this stage we 
“shifted gears,” so 
to speak! I posed a 
rather abstract math-
ematical question: 
Suppose, as a cyclist, 
you wish to feel √2. 
What are some whole 
number gear values 
that form a fraction 
approximating √2?

 
The Math Teachers' Circle of Hawai'i (MaTCH) 
examines gears on a bicycle.
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Approximations in Cycling

Organizing our work into an ordered table with 
rows (r) of numerators (n) and denominators (d):

r n d
1 1 1
2 3 2
3 7 5
4 17 12
5 41 29

we see that by the fourth and fifth rows, the fractions 
are getting quite close to √2. To see why, notice that for 
any row r > 1,  nr = nr−1 + 2dr−1, and dr = nr−1 + dr−1. 
Furthermore, for a given row r, if (nr)2 − 2(dr)2 = 1, 
then (nr+1)2 − 2(dr+1)2 = −1. Similarly, if (nr)2 − 2(dr)2 = 
−1, then (nr+1)2 − 2(dr+1)2 = 1. So, this table provides a 
quick and efficient way to produce lots of values of n 
and d satisfying (nr)2 − 2(dr)2 = ±1.

To see what this has to do with finding a ratio close 
to √2, note that we can rewrite this last equation as 

    				              .

The left side of this equation can be factored to give
n
d

n
d d
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d

2 1+ >  (it is close to 3), this means that

 	                .

If √2 were a rational number, say √2 = p/q, then the in-
equality above makes no sense once d > q, unless n/d = 
p/q, but this is not true for our choice of n/d. Somehow 
the fact that there are lots of rational numbers very 
close to √2  tells us that it is an irrational number.
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Some numbers have extraordinarily good rational 
approximations, much better than √2. One example 
is π . Many people are familiar with 22/7, which is 
within just over one thousandth of π . Even more 
extraordinary is the fraction 355/113, which is 
within a few ten millionths of π . The subject of how 
close a number can be approximated with fractions 
of limited-size denominator has a very rich history 
and has occupied some of the best mathematical 
minds for centuries. 

Other interesting observations and ideas that 
came up during the Circle session included:

•  Participants can model the spinning of gears by 
forming two circles.

•  Determining what speeds will be comfortable on 
a bike is a multi-layered ratio problem: You need 
to consider the ratio of front teeth to rear teeth, 
but also the ratio of the circumference of the tire 
to its diameter, and then your units of distance 
and time in order to find an answer. 

•  The technical details of how a bike works, though 
accessible, are not intuitive. (For example, it 
gets easier to pedal when you go to fewer teeth 
in the front but to more teeth in the rear!) 
Understanding how a bike works was, in a lot of 
ways, the biggest achievement of the session!  ⊆

Participants model the spinning of a gear.
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Borchelt, Faughn Present at ICME
Nathan Borchelt and Axelle Faughn (Western 
Carolina University and Smoky Mountain MTC) 
were selected to present at the International 
Congress on Mathematical Education in 
Hamburg, Germany, in July 2016 (www.icme13.
org). International Congresses are held every 
four years and offer a unique opportunity for 
mathematics educators from the around the 
world to discuss issues related to mathematics 
education. Participants interact with mathematics 
educators from around the world, listen to 
world-renowned scholars in mathematics and 
mathematics education, and take part in small, 
focused topic study groups on a wide range of 
topics. During the conference, Borchelt and 
Faughn co-led a workshop, co-presented a paper, 

and gave a poster presentation, all of which were focused on Math Teachers’ Circles.  ⊆

Picciotto Honored with Pólya Award
Henri Picciotto (www.MathEducationPage.org), a math education consultant 
and frequent guest leader at the AIM Math Teachers’ Circle, received the 2016 
George Pólya Award from the Mathematical Association of America (MAA). The 
Pólya Award is given for articles of expository excellence published in The College 
Mathematics Journal. Picciotto’s article, titled “Square-Sum Pair Partitions,” was 
co-written with Gordon Hamilton (www.MathPickle.com) and Kiran Kedlaya 
(University of California, San Diego). The article grew out of a blog post Picciotto 
wrote about the following problem: “Arrange the whole numbers from 1 to 18 
into nine pairs, so that the sum of the numbers in each pair is a perfect square.” In 
subsequent blog posts, Picciotto sought help as he tried to generalize the problem, 
and discussed his own experience with this problem as evidence that well-targeted 
hints can be a good thing. The blog posts inspired the resulting paper, which was 

published in the September 2015 College Mathematics Journal. The article can be found at www.mathedpage.
org/attc/in-addition/cmj-sq-sum-particitions.pdf.  ⊆

Picciotto

Borchelt Faughn
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Lomas Publishes MTC-Related Lesson Plan
“Grid Paper Exploration,” by Randy Lomas (Harvest Park Middle School 
and American Institute of Mathematics MTC), was recently published in 
the California Mathematics Council ComMuniCator. In the article, Lomas 
describes a middle school exploration of a favorite MTC problem that 
involves counting squares on a sheet of grid paper. Lomas began writing 
the lesson plan in summer 2015 at the AIM MTC summer immersion 
workshop, as part of a new program for veteran members of the AIM 
MTC. Lomas and five other classroom teachers paired up with mathema-
ticians to create lesson plans with a focus on open-ended problem solv-
ing. The lesson plans were later classroom-tested by other members of the 
MTC. Lomas’ lesson plan and Tatiana Shubin’s MTC session on which it 
is based can be found on our website: www.mathteacherscircle.org/re-
sources/video-library/#grid.    ⊆

Lomas

Porath Receives Invitation to White House
Jane Porath (East Middle School and MTC Network Advisory Board) re-
ceived an invitation from President Barack Obama to attend the Teacher 
of the Year event at the White House on May 3. Porath was nominated for 
this honor by the National Council of Teachers of Mathematics (NCTM). 
The White House issued a proclamation honoring “great educators” such 
as Porath for being on the front lines of progress: “As our nation has 
advanced on our journey toward ensuring rights and opportunities are 
extended fully and equally to all people, America’s teachers…have helped 
steer our country’s course. They witness the incredible potential of our 
youth, and they know firsthand the impact of a caring leader at the front 
of the classroom.”

Porath acknowledged the honor in a press release from the Traverse 
City Area Public Schools: “I want to thank my colleagues and the school 
district for their support as I strive to be the best educator I can be for my 
students. I am proud and humbled to represent Traverse City Area Public 
Schools at the White House and to be recognized among the nation’s top 
teachers.”    ⊆ Porath
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Colorado • b
The Northern Colorado MTC ran its fourth residen-
tial week-long summer camp, July 10-15, at the YMCA 
in Winter Park, CO. This was the second joint sum-
mer workshop with Rocky Mountain MTC, with 35 
middle school teachers participating. 

Funding from the MAA-Dolciani Mathematics 
Enrichment Grant helped initiate a Student Math 
Circle. Members of the MTC helped tremendously to 
advertise the first Student Math Circle Summer Camp, 
May 31-June 2, with 52 local students attending. 

Delia Haefeli (Winograd K-8 School) received the 
Teacher of the Year award from Greeley Chamber of 
Commerce and Success Foundation. She has been on 
the Northern Colorado MTC leadership team since its 
inception in 2011. 

- Contributed by Gulden Karakok

Connecticut • U
The Fairfield County MTC was awarded $500 from 
the Northeastern Section of the MAA for next year.

- Contributed by Hema Gopalakrishnan

Mississippi • B
The Mississippi Delta MTC held four terrific meetings 
during its inaugural year. Circle member Penni Mor-
gan, currently an elementary math coach, was admit-
ted to a principal training program beginning summer 
2016. Circle leader Liza Cope co-facilitated an MTC 
with Henri Picciotto on graph theory at the annual 
NCTM meeting in San Francisco. The circle used the 
remaining funds from its AIM seed grant to purchase a 
3D printer. Circle member Mary Kline brought her 6th 
grade class to Delta State University to make an optical 
illusion spinner after researching the math connections 
to 3D printing and optical illusions in their Scholastic 
magazine. The Circle held another successful Domino’s 
Pizza Dough Raiser to raise funds for future meetings.                       

- Contributed by Liza Cope

New Mexico • t
James Taylor (Santa Fe MTC) presented a luncheon 
talk at the New Mexico Mathematical Association of 
Two-Year Colleges Conference, May 20-21, in Los Lu-
nas, with 90 participants from New Mexico colleges, El 
Paso, and Flagstaff. He introduced math circles with a 
mix of history, description, and an activity on Brussels 
sprouts, graphs, topology, and the Euler characteristic. 
He also ran a two-hour circle session of Liar’s Bingo.

- Contributed by James Taylor

New York • y
Japheth Wood (Bard Math Circle) won the distin-
guished service award from the MetroNY section of 
the MAA. The award cited his work with math circles 
at the local, regional, and national levels (http://sec-
tions.maa.org/metrony/pastwinners).

- Contributed by Japheth Wood

Oregon • a
The Portland MTC is excited to have been awarded 
a seed grant from AIM. They are holding a kick-off 
workshop on August 16 -17, eager to explore math 
together!

- Contributed by Kara Colley

Pennsylvania • s
The William Penn Foundation recently awarded the 
University of Pennsylvania Graduate School of Edu-
cation (PennGSE) a grant to support mathematics 
instruction in Learning Network 2 of the School Dis-
trict of Philadelphia. The Philadelphia Area MTC has 
been named as a consultant on this grant, to further its 
work with teachers on mathematical problem-solving 
and interpreting and implementing the Standards for 
Mathematical Practice of the Common Core. Addi-
tional funding for PAMTC’s effort has been pledged by 
AIM and a private, Philadelphia-based donor.

- Contributed by Joshua Taton

Local Updates from Across the Country
Dispatches from the Circles

NEWS AND 
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Puzzle copyright James Tanton 2010 and published by Tarquin Books (www.tarquingroup.com), image redesigned by 
mathematical artist Natalya St. Clair (www.natalyastclair.com). Reprinted with permission. ⊆

MATH WITHOUT WORDS

©James Tanton 2010
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