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Bob’s Mad Vet Puzzle Page

http://www.bumblebeagle.org/madvet/index.html

Welcome to Bob’s Mad Veterinarian Puzzle Page

In September of 1998, after fiddling with this puzzle format for
about a decade, I posted the first Mad Veterinarian puzzle to the
rec.puzzles newsgroup:
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Bob’s Mad Vet Puzzle Page

A mad veterinarian has created three animal transmogrifying
machines.
Place a cat in the input bin of the first machine, press the button,
and whirr... bing! Open the output bins to find two dogs and
five mice.
The second machine can convert a dog into three cats and three
mice, and the third machine can convert a mouse into a cat and a
dog. Each machine can also operate in reverse (e.g. if you’ve got
two dogs and five mice, you can convert them into a cat).

You have one cat.

1 Can you convert it into seven mice?

2 Can you convert it into a pack of dogs, with no mice or cats
left over?
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Bob’s Mad Vet Puzzle Page

Puzzle solvers discovered that it was impossible to convert a single
cat into seven mice, nor to a lonesome pack of dogs.

However, they posed and answered followup questions, such as

how many mice can be created from a single cat? and

what’s the smallest number of cats that can be turned into just
dogs?
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Bob’s Mad Vet Puzzle Page

Below, I’ve set up several puzzles of this type, and a java applet
that lets you solve them. Each applet deals with one set of
machines and poses several conversions for you to try to solve.

How To Solve Mad Veterinarian Puzzles

Easy Three Animal Labratory Mar/17/2003

Original Three Animal Labratory Mar/17/2003

Hard Four Animal Labratory Mar/17/2003

Harder Four Animal Labratory Apr/1/2003

Schoolhouse Jelly Beans Apr/2/2003
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Mad Vet puzzles and ...

Mad Vet puzzles were used as part of a weeklong workshop on
Math Teacher Circles, held at the American Institute of
Mathematics in Palo Alto, CA, in June 2008.

There are some interesting connections between Mad Vet puzzles
and various mathematical ideas (e.g., the notion of an invariant).

And it turns out there is a ridiculous connection between Mad Vet
puzzles and ...

Leavitt path algebras !!
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Mad Vet scenarios

A Mad Vet scenario posits a Mad Veterinarian in possession of a
finite number of transmogrifying machines, where

1. Each machine transmogrifies a single animal of a given species
into a finite nonempty collection of animals from any number
of species;

2. Each machine can also operate in reverse; and

3. There is one machine corresponding to each species in the
menagerie.
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Mat Vet Scenario #1

Scenario #1. Suppose a Mad Veterinarian has three machines
with the following properties.

Machine 1 turns one ant into one beaver;
Machine 2 turns one beaver into one ant, one beaver and one
cougar;
Machine 3 turns one cougar into one ant and one beaver.

Let’s do some transmogrification !!

Gene Abrams The graph menagerie



Introduction and brief history
Mad Vet scenarios

Mad Vet groups
Beyond the Mad Vet

Mat Vet Scenario #1

Scenario #1. Suppose a Mad Veterinarian has three machines
with the following properties.

Machine 1 turns one ant into one beaver;
Machine 2 turns one beaver into one ant, one beaver and one
cougar;
Machine 3 turns one cougar into one ant and one beaver.

Let’s do some transmogrification !!

Gene Abrams The graph menagerie



Introduction and brief history
Mad Vet scenarios

Mad Vet groups
Beyond the Mad Vet

Mad Vet graphs

Given any Mad Vet scenario, its corresponding Mad Vet graph is
the directed graph with

V = {A1,A2, . . . ,An},

and having, for each Ai ,Aj in V , exactly

di ,j edges with initial vertex Ai and terminal vertex Aj ,

where the machine corresponding to species Ai produces di ,j

animals of species Aj .
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Mad Vet graphs

Example. Mad Vet scenario #1 has the following Mad Vet graph.
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Recall:

Machine 1: Ant → Beaver
Machine 2: Beaver → Ant, Beaver, and Cougar
Machine 3: Cougar → Ant, Beaver
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Mad Vet equivalence

Key idea: Let’s say there are n different species. Let

Z+ denote {0, 1, 2, . . .}.

A menagerie is an element of the set

S = (Z+)n \ {(0, 0, . . . , 0)}.

There is a natural correspondence between menageries and
nonempty collections of animals from species A1,A2, . . . ,An.

For instance, in Scenario #1 a collection of two beavers and five
cougars would correspond to (0, 2, 5) in S .
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Mad Vet equivalence

There is a naturally arising relation ∼ on S :

Given a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) in S , we write

a ∼ b

if there is a sequence of Mad Vet machines that will transmogrify
the collection of animals associated with menagerie a into the
collection of animals associated with menagerie b.

Using the three properties of a Mad Vet scenario, it is
straightforward to show that ∼ is an equivalence relation on S .
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Mad Vet equivalence

We focus on the set

W = {[a] : a ∈ S}

of equivalence classes of S under ∼.

Example. Suppose that our Mad Vet of Scenario #1 starts with
the menagerie (1, 0, 0).

(Recall: Machine 1: A → B Machine 2: B → A, B, C Machine 3: C → A,B)

Then, for example,

(1, 0, 0) ∼ (0, 1, 0) ∼ (1, 1, 1) ∼ (2, 2, 0) ∼ (4, 0, 0).

Rewritten,

[(1, 0, 0)] = [(0, 1, 0)] = [(1, 1, 1)] = [(2, 2, 0)] = [(4, 0, 0)] in W .
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Mad Vet equivalence

(Recall: Machine 1: A → B Machine 2: B → A, B, C Machine 3: C → A,B)

Claim. W is the 3-element set

{[(1, 0, 0)], [(2, 0, 0)], [(3, 0, 0)]}.

Reason. It’s not hard to see that any (a, b, c) is equivalent to one
of the menageries (1, 0, 0), (2, 0, 0), or (3, 0, 0).
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Mad Vet equivalence

(Recall: Machine 1: A → B Machine 2: B → A, B, C Machine 3: C → A,B)

Why are these classes not equal to each other? Given a menagerie
m = (a, b, c), define the sum

sm = a + b + 2c .

(Intuitively: sm is the dollar value of menagerie m, where an Ant
costs $1, a Beaver $1, and a Couger $2.)

Then Machines 1 and 3 leave sm the same, while Machine 2
increases sm by 3 (and running Machine 2 in reverse decreases sm

by 3). So any application of any machine to any menagerie leaves
the total value of the menagerie invariant mod 3. So the three
classes are distinct.
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Semigroups, monoids, and groups

Reminder / review of notation.

1 semigroup: associative operation.

e.g. N = {1, 2, 3, ...} under addition.

2 monoid: semigroup, with an identity element.
e.g. Z+ = {0, 1, 2, 3, ...} under addition.

3 group: monoid, for which each element has an inverse.
e.g. Z = {−3,−2,−1, 0, 1, 2, 3, ...} under addition.
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Mad Vet semigroups

Start with a Mad Vet scenario. Define addition on W (the set of
equivalence classes of menageries) by setting

[x ] + [y ] = [x + y ].

Interpret as “unions” of menageries.

This operation is well defined.

“Mad Vet semigroup.”
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Mad Vet semigroups

(Recall: Machine 1: A → B Machine 2: B → A, B, C Machine 3: C → A,B)

Example.

W = {[(1, 0, 0)], [(2, 0, 0)], [(3, 0, 0)]}.

We get, for instance,

[(1, 0, 0)] + [(1, 0, 0)] = [(1 + 1, 0, 0)] = [(2, 0, 0)],

as we’d expect.

But also

[(1, 0, 0)] + [(3, 0, 0)] = [(4, 0, 0)] = [(1, 0, 0)].

So [(3, 0, 0)] behaves like an identity element with respect to the
element [(1, 0, 0)] in W .
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Mad Vet semigroups

Similarly

[(2, 0, 0)]+[(3, 0, 0)] = [(2, 0, 0)], and [(3, 0, 0)]+[(3, 0, 0)] = [(3, 0, 0)].

So for this Mad Vet scenario the Mad Vet semigroup W is a
monoid with identity [(3, 0, 0)].
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Mad Vet semigroups

Actually, since

[(1, 0, 0)] + [(2, 0, 0)] = [(3, 0, 0)]

in W , every element in W has an inverse.

So W is in fact a group, necessarily Z3.
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Mad Vet semigroups

Scenario #2. Suppose the same Mad Vet has replaced two of
her machines with new machines.

Machine 1 still turns one ant into one beaver;
Machine 2 now turns one beaver into one ant and one cougar;
Machine 3 now turns one cougar into two cougars.

In this situation W is a monoid, but not a group.

In fact,

W = {[(i , 0, 0)] : i ∈ N} ∪ {[(0, 0, 1)]}.

[(0, 0, 1)] is an identity element for this Mad Vet semigroup.

So W in this case is a monoid.

But W is not a group: e.g., there is no element [x ] in W for which

[(1, 0, 0)] + [x ] = [(0, 0, 1)].
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Mad Vet semigroups

The Big Question:

Given a Mad Vet scenario, when is the corresponding Mad Vet
semigroup actually a group?

More Mad Vet scenarios ...
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Mad Vet semigroups

Scenario #3.

M1: A → B,C; M2: B → A,C; M3: C → A,B

Scenario #4.

M1: A → 2A; M2: B → 2B; M3: C → 2C

Scenario #5.

M1: A → B,C; M2: B → A,B; M3: C → A,C

Scenario #6.

M1: A → B; M2: B → C; M3: C → C

Scenario #7.

M1: A → A,B,C; M2: B → A,C; M3: C → A,B
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Mad Vet semigroups

Subtle?

Among Scenarios #3-7, there are Mad Vet semigroups W for
which:

1 W is an infinite group;

2 W is a finite noncyclic group;

3 W is a finite nonmonoid;

4 W is a finite cyclic group, not isomorphic to Z3; and

5 W is an infinite nonmonoid.
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Some graph theory: context

Euler’s “Bridges of Königsberg” problem.

Idea:

1 translate the problem to a question about graphs;

2 prove a theorem about graphs;

3 use the graph-theoretic result to answer original question.
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Graph theory

Some graph theory terminology. (All graphs are directed.)

1 A sink in a directed graph.

2 A path in a directed graph.

3 If v and w are vertices, v connects to w in case either v = w
or there is a path from v to w .

4 For a vertex v , a cycle based at v is a (nontrivial) path from v
to v for which no vertices are repeated.

5 A finite graph Γ is cofinal in case every vertex v of Γ connects
to every cycle and to every sink in Γ.

6 If C = f1f2 · · · fm is a cycle in Γ, then an edge e is called an
exit for C if the source vertex of e equals the source vertex for
fj (some j), but e 6= fj . (Intuitively, an exit for C is an edge e,
not included in C , which provides a way to step off of C .)
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Mad Vet graphs

Example.
z

g

��
yLL

e

UU

h
// x ee

The cycle eg based at y has two exits: h and the loop at y .

These same edges are also exits for the cycle ge based at z .
Similarly, the loop at y has exits e and h.

The loop at x has no exit.

This graph is not cofinal (e.g., x does not connect to eg).
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Mad Vet Group Test

Theorem: Mad Vet Group Test. The Mad Vet semigroup W of
a Mad Vet scenario is a group if and only if the corresponding Mad
Vet graph Γ has the following two properties.

(1) Γ is cofinal; and
(2) Every cycle in Γ has an exit.

Proof.: Long, but can be done using only basic graph-theoretic
and group-theoretic ideas.

(Actually, two proofs are known. More about that later.)
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Mad Vet Group Test

An overview of one of the proofs.

Lemma. A commutative semigroup S is a group if and only if for
each pair x , z ∈ S there exists y ∈ S for which x + y = z .

Proof: Good exercise for Math 414 students. (Fraleigh, Section 4,
Problem 39 ...)

Now show that the two conditions on Γ imply the hypotheses of
the Lemma.

www.maa.org → Publications → Periodicals →
Mathematics Magazine → June 2010
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Mad Vet Group Test

Here’s the Mad Vet graph from Scenario #1 again:

A

��?
??

??
??

C

??�������
99 BRR

oo

kk

(Recall: Machine 1: A → B Machine 2: B → A, B, C Machine 3: C → A,B)

Cofinal? YES. Every cycle has an exit? YES.
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Mad Vet Group Test

Here’s the Mad Vet graph Θ of Scenario #2.

A

��?
??

??
??

CLL
��

Boo

kk

(Recall: Machine 1: A → B Machine 2: B → A, C Machine 3: C → 2C)

Cofinal? NO. (C does not connect to the cycle ABA.)

(But every cycle does have an exit ...)
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Mad Vet Group Test

Scenario #8. Let’s analyze Mad Vet Bob’s puzzle.

(Recall: Machine 1: A → 2B,5C Machine 2: B → 3A, 3C Machine 3: C → A,B)

A

(5)

��
(2)

%%
C

EE

22 B

(3)
rr

(3)

ee

So Mad Vet Bob’s semigroup is in fact a group.
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Mad Vet Groups

Just exactly what group is it ?????

This question has a remarkably nice answer.

Any graph Γ has an associated incidence matrix AΓ: if Γ has n
vertices v1, v2, . . . , vn, then AΓ is the n × n matrix (dij), where

dij = # of edges starting at vi and ending at vj .
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Mad Vet Groups

For example, if ∆ is the graph of Scenario #1,

A

��?
??

??
??

C

??�������
99 BRR

oo

kk

then

A∆ =

 0 1 0
1 1 1
1 1 0


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Mad Vet Groups

Now form the matrix In − AΓ.

For instance, using the above matrix A∆,

I3−A∆ =

 1 0 0
0 1 0
0 0 1

 −
 0 1 0

1 1 1
1 1 0

 =

 1 −1 0
−1 0 −1
−1 −1 1

 .

Gene Abrams The graph menagerie



Introduction and brief history
Mad Vet scenarios

Mad Vet groups
Beyond the Mad Vet

Mad Vet Groups

Then put the (square) matrix In − AΓ in Smith normal form.

The Smith normal form of an n× n matrix having integer entries is
a diagonal n × n matrix whose diagonal entries are nonnegative
integers

α1, α2, . . . , αq, 0, 0, . . . , 0

such that αi divides αi+1 for each 1 ≤ i ≤ q − 1.
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Mad Vet Groups

The Smith normal form of a matrix A can be obtained by
performing on A a combination of these matrix operations:
interchanging rows or columns, or adding an integer multiple of a
row [column] to another row [column]. The resulting Smith normal
form of matrix A is thus of the form PAQ, where P and Q are
integer-valued matrices with determinants equal to ±1.

(Might need to tweak some signs at the end ...)

Gene Abrams The graph menagerie



Introduction and brief history
Mad Vet scenarios

Mad Vet groups
Beyond the Mad Vet

Mad Vet Groups

Here’s an answer to the “just exactly what group is it?” question.

Mad Vet Group Identification Theorem. Given a Mad Vet
scenario with n species whose Mad Vet semigroup W is a group,
let Γ be its associated Mad Vet graph. Let α1, α2, . . . , αq be the
nonzero diagonal entries of the Smith normal form of the matrix
In − AΓ.

Then

W ∼= Zα1 ⊕ Zα2 ⊕ · · · ⊕ Zαq ⊕ Zn−q.

(Notation: Z1 = {0}.)
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Mad Vet Groups

Example. Letting ∆ be the Mad Vet graph of Scenario #1, the
Smith normal form of the matrix I3 − A∆ is the matrix 1 0 0

0 1 0
0 0 3

 .

Because we already know that Scenario #1’s semigroup is a group,
the Mad Vet Group Identification Theorem implies that it is
isomorphic to Z1 ⊕ Z1 ⊕ Z3

∼= {0} ⊕ {0} ⊕ Z3
∼= Z3, as expected.
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Mad Vet Groups

Example. Let Φ be the Mad Vet graph of Scenario #8 (Mad Vet
Bob’s Puzzle). We’ve checked that Φ has the right properties, so
that the corresponding Mad Vet semigroup is a group. Then IΦ is
the matrix  0 2 5

3 0 3
1 1 0

 .

The Smith normal form of I3 − AΦ turns out to be matrix 1 0 0
0 1 0
0 0 34

 .

So the corresponding group is isomorphic to Z1⊕Z1⊕Z34
∼= Z34.
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Who cares?

Purely Infinite Simplicity Theorem. For a finite directed
sink-free graph Γ, the following are equivalent:

(1) The Leavitt path algebra LC(Γ) is purely infinite and simple.
(This is a statement about an algebraic structure.)

(2) The graph C∗-algebra C ∗(Γ) is purely infinite and simple.
(This is a statement about an analytic structure.)

(3) Γ is cofinal, and every cycle in Γ has an exit.

(4) The graph semigroup WΓ is a group.
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Who cares?

Notes.

Until the recent Mad Vet work, the only proof we knew of
(3) ⇔ (4) was to show that each is equivalent to (1). That proof
ain’t easy.

The equivalence of (1) and (2) remains a mystery.

We can get rid of the sink-free hypothesis in the general analysis.
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15 minutes of fame?

Vol. 83, No. 3, June 2010

®

MATHEMATICS
MAGAZINE

The Mad Veterinarian (p. 168)

• A Remarkable Euler Square
• The Ergodic Theory Carnival
• Tower of Hanoi Graphs
• Drilling through a Sphere

An Official Publication of The MATHEMATICAL ASSOCIATION OF AMERICA
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Questions?
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